If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^2+7^2=x^2
We move all terms to the left:
8^2+7^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+113=0
a = -1; b = 0; c = +113;
Δ = b2-4ac
Δ = 02-4·(-1)·113
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{113}}{2*-1}=\frac{0-2\sqrt{113}}{-2} =-\frac{2\sqrt{113}}{-2} =-\frac{\sqrt{113}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{113}}{2*-1}=\frac{0+2\sqrt{113}}{-2} =\frac{2\sqrt{113}}{-2} =\frac{\sqrt{113}}{-1} $
| 33+4x+17+6x-10=180 | | 2t^2+3t+10=0 | | X2+700-2x=0 | | -7=r/10-6 | | 11-4v=2v+5 | | (3x-1)/2=-2/(x+2) | | (5y-9)=(3y+15) | | 2-9n=18 | | (4x+3)/12=5/4 | | −3x+8=−1 | | 4y=10= | | (x–5)(2x–4)=0 | | 4t^2+t-10=0 | | -40+6y=-2 | | 4+3(y-8)=8y | | 5x+35=5x+15 | | 5y-15=70 | | 3y+6=4y-8 | | 5x-15=5x+15 | | 7e+4(6-e)=15 | | 4x^2+3-6=0 | | 40+6y=-2 | | ((24+y)/4)+(y/2)=7 | | (58-y)=(10+5y) | | 2/3x+15=17. | | 24=2x=14x-24 | | -5(x-7)=1+3x | | -5(x-7=1+3x | | 10x+4(x-3)=16 | | b+23=160 | | 9/x=18/12 | | 14v−10v=16 |